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Overview 

• Background: causal vs. conventional approach to mediation 

• The challenge: binary outcome + multiple mediators 

• The proposed method 

• Simulation results 

• Application to an alcohol intervention study 
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Usually, when considering mediation, we are interested in causation. 
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School-based 
intervention 

Adolescent attitudes  
about alcohol 

Weekly drinking 
at followup 

a 

c’ 

b 

Conventional analysis: product of coefficients 

Fit linear model. 

Direct effect = 𝑐′,   indirect effect = 𝑎𝑏,   total effect = 𝑎𝑏 + 𝑐′ 
 

Intepretation as association, i.e., difference in mean outcome between different people 

• Holding all covariates equal, on average students in the intervention arm had lower 
outcome than students in the control arm (TE). 

• This difference consists of two parts: one explained by the intermediate variable (IE), 
the other not (DE). 

covariates 
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Association ≠ Causation 

 

 

How can we make the leap from association to causation? 

 

 

First step: Define what we mean by causal effects. 
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School-based 
intervention 

Adolescent attitudes  
about alcohol 

Weekly drinking 
at followup 

Mediation effect causally defined 

Causal effects on the individual  (adolescent 𝑖): 

Potential outcomes 𝑌𝑖 1 , 𝑌𝑖 0  and potential mediator levels 𝑀𝑖 1 , 𝑀𝑖 0  

Intervention effect:  𝑌𝑖 1 − 𝑌𝑖 0 = 𝑌𝑖 1,𝑀𝑖 1 − 𝑌𝑖 0,𝑀𝑖 0  → total effect 

Define natural direct effect and natural indirect effect: 

NDE= effect fixing the mediator at natural level under one intervention condition 

e.g.,  𝑌𝑖 1,𝑀𝑖 0 − 𝑌𝑖 0,𝑀𝑖 0  

NIE = effect due to switching mediator level but fixing intervention condition 

e.g., 𝑌𝑖 1,𝑀𝑖 1 − 𝑌𝑖 1,𝑀𝑖 0  

 

covariates 

𝑌 

𝑀 

𝑋 
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School-based 
intervention 

Adolescent attitudes  
about alcohol 

Weekly drinking 
at followup 

Mediation effect causally defined 

Causal effects on the group/population 

TE: E 𝑌 1 − E 𝑌 0 = 

 E 𝑌 1,𝑀 1 − E 𝑌 0,𝑀 0  

NDE: E 𝑌 1,𝑀 0 − E 𝑌 0,𝑀 0  

NIE: E 𝑌 1,𝑀 1 − E 𝑌 1,𝑀 0  
 

covariates 

𝑌 

𝑀 

𝑋 

𝐶 
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This refers to the whole 
group/population being 
under one condition 
versus another. 



When the system is linear (and all confounding is controlled), 
NIE and NDE match effects from conventional analysis. 

 

With non-linearity (e.g., binary outcome, interaction), they do 
not match. 
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Binary outcome 

Conventional approach:  if probit/logit model to reflect non-linearity, effects reflect 
differences in the means of a latent continuous variable underlying the outcome. 
 

Causal approach: TE, NDE and NIE are expressed using a measure of effect for a binary 
outcome, e.g., risk differences or risk ratios 
 

Potential outcome probabilities Causal effects 
(potential prevalence of weekly drinking) (reduction in weekly drinking prevalence) 

𝑝11 = P 𝑌 1,𝑀 1 = 1  TE = 𝑝11 − 𝑝00  or  𝑝11/𝑝00 

𝑝00 = P 𝑌 0,𝑀 0 = 1  NDE = 𝑝10 − 𝑝00  or  𝑝10/𝑝00 

𝑝10 = P 𝑌 1,𝑀 0 = 1  NIE = 𝑝11 − 𝑝10  or  𝑝11/𝑝10 

School-based 
intervention 

Adolescent attitudes  
about alcohol 

Weekly drinking 
at followup 

covariates 
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The causal mediation literature was focused on the single 
mediator case. 

 

However, we are often faced with multiple mediators. 

 

We may be interested in: 

• path specific effects 

• combined mediation effect of the multiple mediators 
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Intervention 

Adolescent self-control 

Adolescent-reported parental rules 

Adolescent attitudes 

Parent attitudes 

Weekly drinking 
at followup 

Parent rules 

Motivating example: Parent-and-student (PAS) intervention to 
reduce adolescent drinking, in the Netherlands 
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Overview 

• Background: conventional and causal approaches to mediation 

• The challenge: binary outcome + multiple mediators 

• The proposed method 

• Simulation results 

• Application to an alcohol intervention study 
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Would like to 

• Estimate/predict 𝑝11, 𝑝00, 𝑝10 (for the whole sample) 

• Use those to compute TE, NDE, NIE 

 

 

 

 

 

 

Need assumptions 

and need to be clear about the assumptions 

𝑋 = 1 𝑌 1,𝑀 1  𝑌 0,𝑀 0  𝑌 1,𝑀 0  

𝑋 = 0 𝑌(1,𝑀 1 ) 𝑌 0,𝑀 0  𝑌 1,𝑀 0  
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Assumptions of the proposed method 

• The usual identifying assumptions 

– No unmeasured exposure-outcome confounding 

– No unmeasured exposure-mediator confounding 

– No unmeasured mediator-outcome confounding 

– No mediator-outcome confounder influenced by exposure 
(but ok for the mediators in the set to influence one another) 

 

 

 

• Method-specific assumptions:  

– Multivariate normal/probit model for the potential mediators 

– Probit model for the potential outcomes 

– No mediator-mediator interaction 
(exposure-mediator interaction is ok) 

𝑋 

𝐶 

𝑀 

𝑌 

𝑋 

𝐿 

𝑀 

𝑌 
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Example with 2 continuous mediators 𝑀1, 𝑀2, 1 covariate 𝐶, and no 𝑋-𝑀 interaction 
 

(method accommodates more 𝑀s & 𝐶s, ordinal 𝑀s, and 𝑋-𝑀 interaction) 
 

Assume a probit model for the potential outcomes 

P 𝑌 𝑥,𝑚1, 𝑚2 = 1 = 𝜙 −𝜏 + 𝛽𝑥 + 𝛾1𝑚1 + 𝛾2𝑚2 + 𝛿𝐶   
 

which is equivalent to  

a linear normal model on a latent continuous variable underlying the potential outcome 

𝑌∗ 𝑥,𝑚1, 𝑚2 = −𝜏 + 𝛽𝑥 + 𝛾1𝑚1 + 𝛾2𝑚2 + 𝛿𝐶 + 𝜖𝑌 𝜖𝑌 ~ N 0,1 ,   𝜖𝑌 ⊥ 𝜖𝑀1
, 𝜖𝑀2

 

𝑌 =  
1   if   𝑌∗ > 0
0   if   𝑌∗ ≤ 0

   P 𝑌 = 1 = 𝜙 E 𝑌∗  

 

Want    𝑝𝑥𝑥′ = P 𝑌 𝑥,𝑀1 𝑥′ , 𝑀2 𝑥′ = 1 .      

Strategy:  get to 𝑝𝑥𝑥′  via    𝑌∗ 𝑥,𝑀1 𝑥′ , 𝑀2 𝑥′ = 𝑌𝑥𝑥′
∗ . 

 

How the method works 
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Replace 𝑚1, 𝑚2 with 𝑀1 𝑥′ , 𝑀2 𝑥′   in the potential outcomes model: 
 

𝑌𝑥𝑥′
∗ = −𝜏 + 𝛽𝑥 + 𝛾1𝑀1 𝑥′ + 𝛾2𝑀1 𝑥′ + 𝛿𝑐 + 𝜖𝑌  

= −𝜏 + 𝛾1𝜇1 + 𝛾2𝜇2 + 𝛽𝑥 + 𝛾1𝛼1 + 𝛾2𝛼2 𝑥′ + 𝛿 + 𝛾1𝜆1 + 𝛾2𝜆2 𝐶 + 𝜖𝑌 + 𝛾1𝜖𝑀1
+ 𝛾2𝜖𝑀2

  

 

Want to convert  E 𝑌𝑥𝑥′
∗   to  𝑝𝑥𝑥′, 

but  Var 𝜖𝑌 + 𝛾1𝜖𝑀1
+ 𝛾2𝜖𝑀2

= 1 + 𝛾1
2𝜎1

2 + 𝛾2
2𝜎2

2 + 2𝛾1𝛾2𝜎12 > 1.  

 

No problem! 

Rescale   𝑌𝑥𝑥′
∗∗ = 𝑌𝑥𝑥′

∗ / Var 𝜖𝑌 + 𝛾1𝜖𝑀1
+ 𝛾2𝜖𝑀2

   then convert    𝑝𝑥𝑥′ = 𝜙 E 𝑌𝑥𝑥′
∗∗ . 
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+ 𝛾2𝜖𝑀2

   then convert    𝑝𝑥𝑥′ = 𝜙 E 𝑌𝑥𝑥′
∗∗ . 
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Replace 𝑚1, 𝑚2 with 𝑀1 𝑥′ , 𝑀2 𝑥′   in the potential outcomes model: 
 

𝑌𝑥𝑥′
∗ = −𝜏 + 𝛽𝑥 + 𝛾1𝑀1 𝑥′ + 𝛾2𝑀1 𝑥′ + 𝛿𝑐 + 𝜖𝑌  

= −𝜏 + 𝛾1𝜇1 + 𝛾2𝜇2 + 𝛽𝑥 + 𝛾1𝛼1 + 𝛾2𝛼2 𝑥′ + 𝛿 + 𝛾1𝜆1 + 𝛾2𝜆2 𝐶 + 𝜖𝑌 + 𝛾1𝜖𝑀1
+ 𝛾2𝜖𝑀2

  

 

Want to convert  E 𝑌𝑥𝑥′
∗   to  𝑝𝑥𝑥′, 

but  Var 𝜖𝑌 + 𝛾1𝜖𝑀1
+ 𝛾2𝜖𝑀2

= 1 + 𝛾1
2𝜎1

2 + 𝛾2
2𝜎2

2 + 2𝛾1𝛾2𝜎12 > 1.  

 

No problem! 

Rescale   𝑌𝑥𝑥′
∗∗ = 𝑌𝑥𝑥′

∗ / Var 𝜖𝑌 + 𝛾1𝜖𝑀1
+ 𝛾2𝜖𝑀2

   then convert    𝑝𝑥𝑥′ = 𝜙 E 𝑌𝑥𝑥′
∗∗ . 
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Implementation 

• Evaluate plausibility of assumptions 

• Fit regression model including a multivariate normal model for the mediators 
and a probit model for the outcome  

(easily done in Mplus, Stata, etc.) 

– Check normality of mediator residuals (if continuous mediators) 

– Harvest unstandardized coefficients and residual mediator variances & covariances 

• Compute 𝑝 11, 𝑝 00, 𝑝 10 using 
 

𝑝𝑥𝑥′ = 𝜙
−𝜏 + 𝛾1𝜇1 + 𝛾2𝜇2 + 𝛽𝑥 + 𝛾1𝛼1 + 𝛾2𝛼2 𝑥′ + 𝛿 + 𝛾1𝜆1 + 𝛾2𝜆2 𝐶

1 + 𝛾1
2𝜎1

2 + 𝛾2
2𝜎2

2 + 2𝛾1𝛾2𝜎12
 

• Compute  NDE, NIE, TE 

• Bootstrap for confidence intervals 
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Overview 

• Background: causal vs. conventional approach to mediation 

• The challenge: binary outcome + multiple mediators 

• The proposed method 

• Simulation results 

• Application to an alcohol intervention study 
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Please see paper. 
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Overview 

• Background: causal vs. conventional approach to mediation 

• The challenge: binary outcome + multiple mediators 

• The proposed method 

• Simulation results 

• Application to an alcohol intervention study 

33 



Conventional analysis 

Intervention 

Adolescent self-control 
R2 = 0.26 

Adolescent-reported parental rules 
R2 = 0.33 

Adolescent attitudes 
R2 = 0.25 

Parent attitudes 
R2 = 0.31 

Weekly drinking 
at followup 

R2 = 0.43 

0.21 

0.26 

0.23 

0.15 

–0.26 

–0.15 

–0.18 

–0.15 

–0.12 

Coefficients from SEM, standardized with respect to mediators & outcome: 

 

 

 

 

 

 

 

 

 
 (covariates left out of diagram) 

 

total indirect effects = −.13  (SE = .03) 

direct effect = −.26  (SE = .09) unit of effects is SD of 𝑌∗ 
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Causal analysis using the proposed method 

Intervention 

Adolescent self-control 
intercept: 0.81 

Adolescent-reported parental rules 
intercept: 1.16 

Adolescent attitudes 
intercept: 1.60 

Parent attitudes 
intercept: 2.52 

Weekly drinking 
threshold: –3.73 

0.36 

0.29 

0.32 

0.094 

0.15 

0.17 

0.15 

0.054 

0.08 

0.10 

0.01 

0.16 

0.01 

0.01 

–0.35 

–0.28 

–0.37 

–0.30 

–0.44 

Estimated potential outcome probabilities: Estimated effects on the RR scale: 

𝑝 11 = 18.1% (95% CI = 14.3,21.7%) TE = 𝑝 11/𝑝 00 = 0.58 (95% CI = .45, . 72) 

𝑝 00 = 31.4% (95% CI = 27.8,35.5%) NDE = 𝑝 10/𝑝 00 = 0.70 (95% CI = .55, . 87) 

𝑝 10 = 22.0% (95% CI = 17.3,26.3%) NIE = 𝑝 11/𝑝 10 = 0.82 (95% CI = .76, . 88) 35 

Same SEM: unstandardized coefficients and residual mediator variances & covariances: 
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Thank you! 
 

Questions, comments,  

suggestions for further work  

or potential applications 

welcomed! 

 

My contact info. and website: 

tnguye28@jhu.edu 

trang-q-nguyen.weebly.com 
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